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A direct numerical simulation of a fully developed, low-Reynolds-number turbulent 
flow in a square duct is presented. The numerical scheme employs a time-splitting 
method to integrate the three-dimensional, incompressible Navier-Stokes equations 
using spectral/high-order finite-difference discretization on a staggered mesh ; the 
nonlinear terms are represented by fifth-order upwind-biased finite differences. The 
unsteady flow field was simulated at a Reynolds number of 600 based on the mean 
friction velocity and the duct width, using 96 x 101 x 101 grid points. Turbulence 
statistics from the fully developed turbulent field are compared with existing 
experimental and numerical square duct data, providing good qualitative agreement. 
Results from the present study furnish the details of the corner effects and near-wall 
effects in this complex turbulent flow field; also included is a detailed description of the 
terms in the Reynolds-averaged streamwise momentum and vorticity equations. 
Mechanisms responsible for the generation of the stress-driven secondary flow are 
studied by quadrant analysis and by analysing the instantaneous turbulence structures. 
It is demonstrated that the mean secondary flow pattern, the distorted isotachs and the 
anisotropic Reynolds stress distribution can be explained by the preferred location of 
an ejection structure near the corner and the interaction between bursts from the two 
intersecting walls. Corner effects are also manifested in the behaviour of the 
pressure-strain and velocity-pressure gradient correlations. 

1. Introduction 
Turbulent flow along a streamwise corner is of considerable engineering interest, 

with relevance to flow in the root region of a lifting section, complex flow in 
turbomachinery and heat exchangers, flows in ducts with non-circular cross-section, 
and flows in open channels and rivers. These complex turbulent flows have two 
inhomogeneous directions and are characterized by the existence of secondary flows of 
the second kind (as classified by Prandtl 1926) which are secondary mean flows created 
by the turbulent motion. Although this type of secondary flow is relatively weak (about 
2-3 YO of the streamwise bulk velocity), its effects on wall shear stress distribution, heat 
transfer rates, or transport of passive tracers are quite significant (Demuren 1990). 
Secondary flow of the second kind is most frequently studied by considering turbulent 
flow in a square duct because of its relatively simple geometry which also provides an 
excellent case to test and develop turbulence models. The mean transverse secondary 
flow that occurs in this geometry is well defined and consists of eight streamwise 
vortices, two counter-rotating in each corner, with the flow directed toward the corners 
from the duct centre along the corner bisector, and toward the duct centre along the 

1- Current address: DNV Technica, N-1322 Hsvik, Norway. 
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wall bisector. An explanation of the origin of secondary flows of the second kind was 
first offered by Prandtl (1926), who suggested that in a region of isotach curvature, 
secondary flows are created by turbulent velocity fluctuations. Prandtl postulated that 
in these regions velocity fluctuations are greater parallel to the isotachs than normal to 
the isotachs, causing flow toward the concave side of the isotachs. In a later 
description, Prandtl(l952) explained the distorted isotachs by the convection of mean 
velocity toward regions with low shear (e.g. along the corner bisector in square duct 
flow) from regions with high shear (e.g. along the walls in square duct flow). This 
results in an increased mean velocity along the corner bisector and reduced mean 
velocity near the wall bisector (as opposed to laminar flow), as first documented 
experimentally by Nikuradse (1930). In order to investigate the convection of mean 
streamwise velocity by the secondary flow, Gessner (1973) analysed the terms in the 
total kinetic energy equation along the corner bisector. Accordingly, energy loss due 
to a positive turbulent shear stress gradient along the corner bisector is compensated 
by an increase in total energy in the streamwise mean velocity. Gessner (1973) 
concluded that the anisotropy of the primary shear stress is the main cause of the 
increased streamwise velocity in the corners. 

A review of experimental work and turbulene models describing secondary flows is 
given by Demuren & Rodi (1984). In their study, calculations were performed using an 
algebraic Reynolds stress model. The results showed the difficulties involved in 
modelling the secondary flows produced by a fine balance between the secondary 
Reynolds stress gradients. 

Experimental studies of simple turbulent shear flows have demonstrated that 
streamwise vorticity is primarily created during a bursting event observed as low-speed 
streaks and ejections (Kline et al. 1967). In the square duct flow, bursting is also the 
dominating event. Secondary flow of the second kind contains mean streamwise 
vortices, produced by three-dimensional mean strain rates. Although significant effort 
has been devoted into the physical and phenomenological description of secondary 
flows of the second kind, a satisfactory explanation of the mechanisms causing these 
effects is still not available; consequently no turbulence model at the present time is 
fully capable of predicting the turbulence characteristics of secondary flows. Because 
the bursting event is central to turbulence production (Lumley 1991) and because the 
ejection structure contains most of the turbulence energy (Moin & Moser 1989), in the 
present work we attempt to explain the creation of mean streamwise vortices in the 
square duct flow by analysing these processes. 

Direct numerical simulation (DNS) of simple shear flows has proven to be an 
effective and important tool for studying turbulence structures and near-wall effects. 
Used in connection with experiments and theoretical models, DNS provides turbulence 
modellers with the ability to validate concepts and theories (Launder 1990). Earlier 
DNS work has primarily concentrated on turbulent channel flow (Kim, Moin & Moser 
1987) and zero-pressure-gradient boundary layer (Spalart 1985), documenting near- 
wall effects on turbulent wall-bounded flows with one inhomogeneous direction. Moser 
& Moin (1987) performed the DNS of a curved channel flow, highlighting the 
centrifugal force influence on turbulent channel flow. In contrast to these studies, in 
which there is only one inhomogeneous direction, the present work considers a 
geometry with two inhomogeneous directions and focuses on ‘new’ effects resulting 
from the complex interaction of turbulence structures in the vicinity of the corners. The 
description of these new effects motivates the present work, leading to the cause of the 
distorted isotachs and the creation of mean secondary flows. Simultaneously with the 
present work, Gavrilakis (1992) performed a DNS of the square duct at a low Reynolds 
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number, providing a detailed description of the mean flow in the transverse plane and 
turbulence statistics along the wall bisector. Gavrilakis (1992) also calculated the terms 
in the mean streamwise vorticity equation, but did not report the mechanisms 
responsible for the new effects due to the presence of the corner. 

The objective of this work is to develop an efficient numerical solution procedure for 
the three-dimensional, time-dependent, incompressible Navier-Stokes equations and 
to perform a DNS of the square duct flow at a Reynolds number in the well-established 
turbulent regime, providing a database from which turbulence statistics and the 
characteristics of the Reynolds-averaged flow field are obtained. The DNS data base 
is then used to provide a detailed description of the corner influence on turbulence 
statistics and on the origin of the secondary flows of the second kind. 

2. Problem definition and scales 
We consider fully developed, incompressible turbulent flow in a square duct; the 

geometry and coordinate system are displayed in figure 1. The governing equations are 
the three-dimensional, time-dependent Navier-Stokes equations, 

au 1 
-+u.VU = -Vp+--V2u+&, 
at Re, 

and the continuity equation, 
v-u = 0. (2) 

Equations (1) and (2) are written in non-dimensional form, where the mean friction 
velocity, u,, and the duct width, D, are used as the velocity and lengthscales, 
respectively. With this non-dimensionalization, the Reynolds number is defined as 
Re, = u,D/u. The lengthscale used here is the hydraulic diameter and this is four times 
the hydraulic radius, which is the lengthscale commonly used in channel flow (D = 48). 
The kinematic viscosity is given by v ;  the mean pressure gradient is -4i, where i 
represents the unit vector in the streamwise direction; the fluctuating pressure is given 
by p = P/@u,2), where P is the dimensional pressure and p is the density. No-slip 
boundary conditions are imposed on the solid walls and the flow is assumed to be 
periodic in the x-direction. 

The data base used in the present work was obtained from two runs, the 
computational parameters for which are given in table 1. The Reynolds number in both 
calculations was Re, = 600 which is in the fully developed turbulent regime. The 
following algebraic stretching was implemented along the wall-normal directions 
(Anderson, Tennehill & Pletcher 1984, p. 249), 

where a = (b + I)/@- l), Nu is the number of grid points in the y-direction and 
b = 1.1 is a stretching parameter. Figure 2 displays the energy spectra for the coarse grid 
calculation (Run A, table 1) obtained at points along the wall bisector; in this figure 
a, is the x-directional wavenumber, a, = 2zn/l,, n = 0, 1, . . . , iNz - 1, where 1, = L,/D 
is the non-dimensional computational box length and N,  is the number of grid points 
along the x-direction. This figure exhibits only a marginal buildup of energy in the high 
wavenumbers, indicating that even at this low resolution, the present numerical code 
accurately captures the energy spectra, especially for the large-scale effects. 

The streamwise two-point correlation lengths represent the characteristic length of 
the longest turbulence structures in the streamwise direction and the computational 
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FIGURE 1. Geometry and coordinate system. 

Run Grid [tot At Re* 
A 81 x81 x 64 15 0.001 10620 
B 100x100~96 10 0.0008 10320 

TABLE 1. Computational parameters and bulk Reynolds numbers from runs A and B. 
Re, = 600, I, = 6.4. 
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FIGURE 3. Two-point correlation coefficient, R,,, at selected points along the wall bisector; 
z = 0.51. 

domain must be able to capture these structures. Sample results from the present 
coarse-grid calculations indicate that the correlation coefficients are close to zero at 
x = :Zx = 3.2 (figure 3). Consequently no further computer resources were committed 
to study the influence of the domain length and 1, = 6.4 was used throughout this 
work. In comparison, in the recent study of Gavrilakis (1992) a box length of 
1, = 3 1.4 was used, whereas the large-eddy simulation of Madabhushi & Vanka (1991) 
was performed with Z, = 6.4, as in the present work. On the basis of very favourable 
comparisons of the present results with existing square duct and channel flow data we 
assert that the influence of the shorter computational domain is marginal in the present 
calculations which accurately capture the characteristic effects creating secondary 
flows. 

3. The numerical procedure 
The Navier-Stokes equations, (l), and the continuity equation, (2), were advanced 

in time by using a time-splitting method (Kim & Moin 1984) improved with a 
RungeKutta formulation of the time-stepping procedure (Le & Moin 1991). The time- 
splitting method involves uncoupling of (1) and (2) so that first, the momentum 
equations are solved independently of the pressure field, and second the velocities are 
corrected by a pseudo-pressure field, which satisfies a divergence-free velocity field. 
With the Runge-Kutta formulation, the uncoupled Navier-Stokes equations are 
obtained as 

Here li" is the intermediate velocity field; m = 1,2,3 denote the substeps in the 
Runge-Kutta scheme. The superscript m -  1 denotes the last substep in the previous 
time-step, At is the total Runge-Kutta time step, N = - a(u, uj)/i3xj + (l/Re,) (a2u/i3x2) 
contains the nonlinear terms and the x-directional viscous diffusion term, with the 
nonlinear terms written in index notation; the coefficients /3, y, and assume constant 
values at each Runge-Kutta substep and these values are given elsewhere (Le & Moin 
1991). The diffusion operator, Viz = az/i3y2+aa/az2, is applied only along the wall- 
normal directions. The x-directional diffusion term is solved explicitly together with the 
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nonlinear terms in order to save storage and computer time. With this Runge-Kutta 
scheme, numerical stability was maintained up to a Courant number, C d 4. This 
Courant number is greater than the upper limit obtained from the linear stability 
analysis (Le & Moin 1991) which is C < d 3 ,  indicating that this linear criterion is not 
very strict in the calculation of the present flow. Calculations performed with smaller 
time steps corresponding to C < 4 3  gave identical results with C < 4 indicating the 
time accuracy of the present results. 

Boundary conditions for the intermediate velocities parallel to the walls are given by 
u.p = 0, wherep denotes the unit direction parallel to the walls. No corrections were 
applied to the intermediate slip velocities, as the present non-corrected boundary 
conditions were found to introduce negligible errors in previous studies (Huser & 
Biringen 1992; Gresho 1990). 

All the finite differences used to represent the first and second derivatives in the wall- 
normal directions were obtained by a Lagrangian polynomial method developed in this 
work. This method obtains the finite-difference coefficients of any order on a stretched, 
staggered grid, including one-sided and biased differences (Huser 1992). 

The convective (nonlinear) terms, represented by a(u, !,)/ax,, are responsible for 
transporting energy in the wavenumber space causing aliasing errors whenever spectral 
or finite-difference methods are used to discretize these terms when the finest scales are 
not resolved. According to Rai & Moin (199 I), these errors can be minimized by using 
high-order upwind-biased finite differences as opposed to central differences and 
spectral methods. Consequently, in the present simulations, fifth-order upwind-biased 
differences were used for the convective terms in all the three directions. 

The time-splitting method involves the implicit solution of the momentum and the 
pressure equations which are Helmholtz- and Poisson-type equations, respectively. 
These equations were efficiently solved by the tensor product method (Huser & 
Biringen 1992). The momentum equations were solved by using fourth-order central 
differences for the viscous terms providing a nine-point stencil in the wall-normal 
directions. Along the streamwise direction, because the flow is periodic, the pseudo- 
spectral Fourier method was implemented to calculate the viscous terms and to solve 
the pseudo-pressure equation. When discretizing the pseudo-pressure equation in the 
wall-normal directions, fourth-order central differences were used, and the coefficient 
matrices were constructed by applying consistent divergence (div) and gradient (grad) 
operators on a staggered mesh. The second-derivative operator was found by 
combining the div and the grad operators resulting in the use of a 13-point stencil for 
the interior points in the wall-normal directions. By using consistent operators in the 
pseudo-pressure equation and when updating the velocities, divergence was satisfied to 
machine accuracy. The details of the application of this method to the present problem 
are available in Huser (1992). 

A low-order version of the solution proedure was tested extensively on two- 
dimensional cavity problems, obtaining good agreement with bench-mark solutions 
(Huser & Biringen 1992). 

4. Turbulence statistics and mean flow budgets 
The fully developed flow in the duct was obtained by perturbing the laminar mean 

flow with a random velocity field, and the code was run until a statistically steady state 
was obtained. Steady state was reached after t = TuJD w 60 time units and was 
identified by a constant mean value of the total kinetic energy and a linear mean shear 
stress profile. This transient period corresponds to a distance of about 13000 travelled 
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FIGURE 4. Ensemble-averaged mean velocities, Run A :  (a) ii-contours, increment = 2; 
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by a particle on the centreline of the duct. This distance is much longer than the 
entrance length which is about 80D (Gessner, Po & Emergy 1979). Long-term statistics 
were obtained from runs A and B (table 1) when the flow was fully developed. 

In this section we present the mean flow properties and one-point correlations from 
runs A and B which are compared with existing experimental and computational data. 
All the terms in the mean streamwise momentum and vorticity budgets are also 
presented. Specifically we focus on the effects of the corner on turbulent stress gradients 
and on the mean convection. 

Long-term statistics were obtained by averaging the flow field in the homogeneous 
direction, x, and in time; in the following discussion, the averaged values are generally 
indicated by an overbar and a prime indicates turbulent fluctuation quantities. 

4.1. Mean flow properties 
The long-term statistics for Run A were obtained over a time-period (t,,, = 15) which 
corresponds to the time it would take a particle at the channel centre to travel a 
distance equal to about 3300. The distributions are ensemble averaged over the eight 
similar triangles that form when the wall and corner bisectors are drawn. This resultant 
flow field is displayed in figure 4, in which only the lower left quadrant of the duct 
cross-section is shown. In order to obtain the best statistical averages, the mean 
properties were ensemble averaged when compared with experiments. 

Figure 4(b) displays the secondary flow velocity vectors, revealing the two 
streamwise, counter-rotating vortices in each corner that characterize this flow. For the 
present low-Reynolds-number computations, the vortex centres are closer to the corner 
and the secondary flow is weaker near the wall bisector than in higher-Reynolds- 
number experiment (Brundrett & Baines 1964). Figure 4(a) shows that the isotachs are 
bent toward the corner, indicating a magnitude increase for a. At the wall bisector, the 
present results exhibit a local maximum for ii whereas a local minimum exists in high- 
Reynolds-number experiments (Brundrett & Baines 1964) (table 2 lists the Reynolds 
numbers of the computational and experimental studies referred to in this paper). The 
occurrence of a local ii maximum at the wall bisector is a low-Reynolds-number effect 
(Gessner 1973 ; Gavrilakis 1992). By plotting the ensemble-averaged skin friction 
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FIGURE 5. Ensemble-averaged wall stress variation. 

Reference 
Present, run B 
Madabushi & Vanka (1991) 
Gavrilakis ( 1  992) 
Gessner et al. (1979) 
Brundrett & Bains (1964) 
Kim et al. (1987) 
Baht  et al. (1991) 

Investigation 
duct, DNS 
duct, LES 
duct, DNS 
duct, experiment 
duct, experiment 
channel, DNS 
boundary layer, experiment 

Re, Re, 
10320 600 
5810 360 
4410 300 

250000 10550 
83 000 3 860 
13 200 720 

Re, = 27650 
TABLE 2. Works considered in this paper and their Reynolds numbers. The Reynolds number Re, 

is based on the boundary-layer thickness and the free-stream velocity. 

variation as a function of the distance along the wall, it is observed that the local 
maximum in ii also yields a maximum in 7, at the wall bisector (figure 5). In figure 5 
the distribution of 7,/7, obtained from the present simulations is compared with data 
from Gavrilakis (1992), which also attains its maximum value at the wall bisector. 
Variations between these distributions could be due to the Reynolds-number differences 
manifested by a steeper gradient in 7,/5, towards the corner at the higher Reynolds 
number of the present study. 

Except for a 2.8% difference in bulk Reynolds numbers (table l), mean velocities 
obtained from the fine-grid calculation are very similar to the coarser grid results 
obtained in run A. The finer resolution in run B provides more accurate results 
indicated by a higher friction factor, which is f = 8u,2/Ui = 0.027 in run B and 
f = 0.026 in run A. The experimentally found friction factor is f = 0.030 (Hartnett, 
Koh & McComas 1962). 

The mean streamwise velocity profile along the wall bisector (z = 0.5) is plotted in 
wall coordinates in figure 6 and compared with the low-Reynolds-number large-eddy 
simulation of Madabhushi & Vanka (1991), and the data from the DNS of Gavrilakis 
(1992). The mean velocity profile is also compared with the law of the wall, which reads 

(6) ii= -lny++5.5, 

where K = 0.41 is the von Karmbn constant and y+ = yRe,. In figure 6,  where the 
variables are normalized with the local friction velocity, the overshoot from the ‘log 

1 
K 
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law’, (6), is likely the result of stronger turbulence production near the walls away from 
the corners in duct flow compared to channel and boundary-layer flows (see $4.2). 
Gavrilakis (1992) also argued that the square duct geometry influences the log law even 
though his data show a closer fit when normalized by the local friction velocity in figure 
6 .  The coarse-grid resolution near the wall bisector (due to the stretched mesh parallel 
to the wall) may also have influenced the mean velocity profile in this region. In figure 
6 ,  a comparison between runs A and B reveals that the overshoot from the log law is 
slightly reduced with the finer grid. 

In figure 7, the secondary velocity distributions along the corner and the wall 
bisector are compared with experiments (Brundrett & Baines 1964 and Gessner & 
Emery 198 1) and simulations (Gavrilakis 1992). The present values of Bare significantly 
lower than the experimental results along the wall bisector (see figure 7a). In the low- 
Reynolds-number simulation of Gavrilakis (1992) negative v are observed for y < 0.1, 
which do not exist in the present results where the Reynolds number is higher (see table 
2). The low B-velocity at the wall bisector in the present results is a low-Reynolds- 
number effect occurring together with the local maximum wall shear stress at this 
location. According to figure 7 (b), the level of the secondary velocity along the corner 
bisector compares well with experiments. Using this velocity as a measure of the 
strength of the secondary flow, figure 7 (b) indicates that when normalized by the mean 
friction velocity, the strength of the secondary flow is independent of the Reynolds 
number (Launder & Ying 1972). In figure 7, results from runs A and B are also 
compared, exhibiting a marginal difference. 

4.2. Turbulence intensities 
The near-wall behaviour of the turbulence intensities, normalized by the local friction 
velocity, is displayed in figure 8 (a-c) where the y+ distributions at the wall bisector are 
compared with data from the channel flow DNS (Kim et al. 1987), boundary-layer 
measurements (Balint, Wallace & VukoslavEeviC 1991) and square duct DNS results 
(Gavrilakis 1992) (table 2). Figure S(a-c) displays that in the viscous sublayer for 
y+ < 10, turbulence intensities from the present calculations provide excellent agreement 
with the other data (Kim et al. 1987 and Gavrilakis), indicating the universality of the 
inner scaling here. Away from the wall, it is observed that the maximum value in ur,, 
is highest in the present square duct flow (figure 8a), whereas further away from the 
wall, in the log region (y+ > 40), the boundary-layer flow (Balint et al. 1991) has the 
highest value. All the components of the turbulent intensity increase with the 
Reynolds number in the log region of wall-bounded turbulent flows (Willmarth 1975 
and Balint et al. 1991). The differences in y+ distributions outside the viscous sublayer 
in figure 8 (a-c) could be the result of Reynolds-number differences, different flow-field 
geometries as well as numerical and experimental errors. In the present results the urms 
decrease with increasing grid resolution (figure 8a). This was also observed by Rai & 
Moin (1991), indicating that the upwind-biased scheme has a tendency to overpredict 
the maximum value in u,,, when the computation is under-resolved. 

4.3. Mean streamwise momentum equation 
For the square duct flow, the Reynolds-averaged streamwise momentum equation is 
written as 

In this non-dimensional equation, u, and D are used as the velocity and length scales 
respectively. Equation (7) applies to a fully developed turbulent flow and is averaged 
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in both the homogeneous x-direction and in time. Consequently, all the x- and t- 
derivatives vanish except for dp/dx, which is the constant driving pressure gradient. 
The terms in the a-equation, (7), are plotted in figure 9(a-c) at different locations. All 
the budget-terms were calculated directly as they appear in (7) in which the convection 
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terms (the left-hand side) balance all the other terms. Along the wall bisector (figure 9 a) 
for y > 0.2, the sum of the primary Reynolds shear stress gradients (the two first terms 
on the right-hand side of (7)) balances the pressure gradient, and the contribution from 
convection in figure 9(a) is small. The low convection along the wall bisector is 
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associated with the low-Reynolds-number effect (see figure 7 a) which is characterized 
by a relatively weak &velocity in this region. 

The contour plots in figure 10 and the distributions in figure 11 delineate how the 
primary Reynolds stresses are influenced by the corner. The primary normal stress (?) 
is significantly reduced in the regions near the corner bisector (figures 10a and 11 c), 
consistent with the reduced a-gradient here (see figure 44. Also, considering the 
horizontal wall, the peak value of u'2 is at z fi: 0.31, and not at z = 0.5, as in the high- 
Reynolds-number experiment of Brundrett & Baines (1964). This is a low-Reynolds- 
number effect related to the reduced &velocity at the wall bisector. The contour plots 
of UluI display asymmetric behaviour (figure lob), where the reduced lu'dl at the wall 
bisector ( z  = 0.5) compared to its value at z = 0.35 is a manifestation of the low- 
Reynolds-number effect. The shear stress, u'd, increases and reaches a maximum 
value near the vertical wall when this is approached horizontally from z = 0.5 for 
0.03 < y < 0.3. The positive at the vertical wall (also illustrated on figure 11 b) is 
probably associated with bursting events from this wall and with the organization 
of the ejection structures near the corner; this issue is investigated further in $ 5 .  
The distributions of (figure 11 b) are similar to the distributions of &' so that mof) - = n ( z ) .  A contour plot of is therefore obtained by a 90' rotation of the 
u'd-contour plot in the (y, z)-plane. 

Toward the corner where the secondary velocities are stronger, mean convection 
becomes significant. Figure 9(b) indicates that near the corner, along the corner 
bisector, mean convection balances both the viscous diffusion (the last term on the 
right-hand side of (7)) and the turbulent shear stress gradients. This negative 
convection represents a loss in the ii-momentum equation, with a minimum value at 
y = z = 0.04 (figure 9b). The same effect was also found by Gessner (1973) 
who investigated the total kinetic energy equation. Accordingly, the positive primary 
shear stress gradient along the corner bisector causes energy loss, which is compensated 
by momentum gain due to mean convection. 

The viscous diffusion of u is reduced along the corner bisector due to the reduced a- 
gradients but it is still significant (figure 9b). In the vicinity of the corner, the turbulent 
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FIGURE 1 1. Primary Reynnolds stress distribution at different z-locations: (a) uIL)*; (b) u"; (c) p. 

shear stress gradients generally contribute to momentum loss in the a-budget (figure 
9 b) as opposed to momentum gain caused by - 8 m p y  at the wall bisector (figure 9 a). 
The resulting negative convection is also observed along - the vertical wall near the 
corner (figure 9c) generated by a faster decrease in -&'w'/az than the increase of the 
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FIGURE 12. Secondary RTnolds stress contours in the lowaef t  quadrant of the transverse plane 
from Run B : (a) o’2-contours, increment = 0.1 ; (b) o’w’-contours, increment = 0.01. 

viscous diffusion term toward the horizontal wall. Along the vertical wall for y > 0.15, 
reduced viscous effects and increased shear stress gradients cause positive convection 
in this region (figure 9c), which in turn, reduces the streamwise momentum. It is 
interesting to note that, according to figure lO(u), the turbulence level attains a 
maximum value in these positive @-convection regions, despite the reduced a-shear. The 
maximum u’2 at this location is caused by the relatively high turbulent primary shear 
stress. The turbulence production is proportional to both the mean velocity shear and 
the turbulent shear stresses. The maximum primary shear stress occurs where the 
convection is highest, and not at the location where the maximum &shear occurs. This 
suggests that in addition to the mean shear, aii/ay, the mean convection, aaa/8y7 
should be accounted for in turbulent shear stress closure models. 

In summary, the inhomogeneous distribution of turbulence production via the 
primary turbulent shear stresses instigates convection of the @-velocity, distorting the 
isotachs, as first explained by Prandtl (1952). 

4.4. Mean streamwise uorticity equation 
The mean streamwise vorticity equation is obtained by eliminating pressure from the 
mean secondary flow momentum equations and substituting the mean streamwise 
vorticity, a5 = aw/ay-au/-/az; this equation reads (Perkins 1970) 

Equation (8) demonstrates the importance of the secondary Reynolds stresses to the 
mean streamwise vorticity production, and the estimation of these terms has been the 
subject of several investigations (Brundrett & Baines 1964; Gessner & Jones 1965; 
Perkins 1970; Madabushi & Vanka 1991; and Gavrilakis 1992). Gessner & Jones 
(1965) first found that both secondary Reynolds stress terms (the first two terms on the 
right-hand side of (8)) contribute to the production of secondary flow. This was also 
confirmed by Perkins (1970), who argued that the secondary - -  flow is generated by the 
difference between the secondary normal stresses (u12 - d2), and that the secondary 
shear stress term, ( a z / / a z 2 - P / 3 y 2 ) ~ ,  acts like a transport term in (8). 
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FIGURE 13. Secondary ReynoMs stressdistribution at different z-locations: 
(a) v ' 2 ;  (b) w'2; (c) u'w'. 

Contour plots and y-distributions of the secondary normal stress, @ (figures 12a 
and 13a), display asymmetric behaviour. Owing to the greater damping effect of the 
horizontal wall, @ has a lower value here than the near vertical wall. Because of flow- 
field symmetry, the *-distribution is obtained by a 90" rotation of the p-distribution 
(figure 13b). Note that the y-gradient of 3 near the corner for y < 0.1 is significantly 
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FIGURE 14. Ensemble-averaged @,-budget distribution at two z-locations: (a) z = 0.015; 
(b) z = 0.1 ; ( c )  z = 0.1 plotted versus y+ coordinates. 

reduced compared to the gradient along the wall bisector (see figure 13a). This 
illustrates one of the secondary effects which produce the secondary flow, and can be 
explained by an energy transfer from the 3-component to the w'2-component 
(opposite above the corner bisector). More detail on the characteristics of this energy 
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transfer process is provided in $7. Contours and distributions of the secondary shear 
stress, m, in the (y,z)-plane are presented in figure 12(b) and 13(c), and display a 
significant minimum value near the corner. 

The y-distributions of the four terms in (8) are plotted in figure 14(a-c) for two z- 
locations. The balance, denoted by a + at each grid point, indicates small deviations 
from zero except for the two grid points near the wall (see figure 14c). This error is due 
to the calculation of the viscous diffusion term during post-processing, which involves 
the use of one-sided finite differences at the wall for the calculation of third-order 
derivatives of the velocity field. At z = 0.1 the distributions reach peak values near the 
wall where the maximum production of streamwise vorticity takes place (Madabushi 
& Vanka 1991 and Gavrilakis 1992). Figure 14(a) presents the distribution of these 
terms near the vertical wall at z = 0.015; the convection has a minimum at y M 0.09 
where the vorticity is negative. Normal stress gradients decrease the magnitude of the 
vorticity here in agreement with the results of Gavrilakis (1992). Figure 14(b, c) 
demonstrates how the negative vorticity is produced below the corner bisector : near the 
wall for y+ c 18 (figure 14c) negative vorticity is produced by the secondary normal 
stress and for y+ > 18 negative streamwise vorticity is produced by the secondary shear 
stress by transporting it outward from the wall. 

Near the horizontal wall is, is positive owing to the no-slip boundary conditions; this 
is caused by strong positive viscous diffusion together with the positive shear stress 
gradient (y’ < 20 in figure 14c). As noted by Gavrilakis (1992) this indicates the 
importance of the viscous diffusion, which was assumed to be negligible by Demuren 
& Rodi (1984). 

5. Quadrant analysis 
In the previous section, it was shown how the anisotropic Reynolds stresses were 

responsible for the convection of streamwise velocity and vorticity. In this section, 
quadrant analysis is -- used to describe the mechanisms which create the off-diagonal 
Reynolds stresses (u’v’, u’w‘ and m). By connecting specific turbulence structures to 
the generation of the anisotropic Reynolds stresses, we intend to provide a physical 
understanding of the generation of secondary flow of the second kind. 

Quadrant analysis generally provides information about the total turbulence 
production from various events which occur in a turbulent flow (Kim et al. 1987) by 
dividing the Reynolds shear stress into four categories according to the signs of the 
fluctuating velocities (figure 15). In this analysis, for the square duct, positive d- and 
w’-velocities always point away from the nearest wall in the y- and z-directions, 
respectively. - In wall-bounded turbulent flows, Q2 and Q4 events for the primary shear 
stress, - u’v’, are associated with low-speed ejections and high-speed sweeps, 
respectively. The other events are not associated with any particular turbulence 
structure when there is only one inhomogeneous direction. In the present flow, because 
there are two inhomogeneous directions, the Q1 and 43 events are also associated with 
turbulence structures as are the 4 2  and 44 events. Note that in the present flow, 
Ql-Q4 events describe the creation of both which act in the y-  and z- 
directions, respectively whereas the Q1,44,  events are related to the generation of 
secondary shear stress (m). In the subsequent analysis, results from Run B are 
ensemble averaged and presented for the lower left quadrant of the duct. 

and 
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5.1. Primary shear stress correlations 
In this section, quadrant analysis is employed to identify the constribution from the 
ejection and sweep events to the production of and u" correlations. Instantaneous 
pictures of the ejection structure, discussed in the next section, illustrate two counter- 
rotating streamwise vortices existing in the shear layer near the wall, with the rotational 
directions pointing upward from the wall between the vortices. This forces low- 
momentum fluid at the wall to enter the high-speed core of the flow, and the flow 
between the vortices is a 4 2  event with negative u' and positive d.  The sweeps, which 
are more difficult to visualize because they are not directly associated with streamwise 
vortices, are associated with an inrush of high-momentum fluid towards the wall region 
and are 44 events with positive u' and negative d. The time evolution of a burst event 
was schematically described by Lumley (199 1) by a proper orthogonal decomposition 
(POD) analysis of the near-wall region analysing the effect of the bursts on streamwise 
vortices. The burst event occurs in an aperiodic manner where one cycle starts with two 
counter-rotating vortices which suddenly increase the updraft between them, ejecting 
low-momentum fluid into the high-speed core of the flow. The vortices further drift 
apart and a gentle downdraft occurs between them, recognized as a sweep. The cycle 
continues with the start of two new ejections, one on each side of the old one, shifted 
one burst period in the spanwise direction. One burst period occupies one streamwise 
vortex and was found to be around Az+ = 100 using wall coordinates, where wall 
coordinates are given by z+ = zRe, (Kline et al. 1967). 

In the square duct, it is reasonable to assume that the same turbulence structures are 
present as in channel flow, and the average deviation of these structures (from channel 
flow characteristics) creates the turbulence characteristics of the secondary flow ; these 
deviations are largest in the corners where the anisotropies are largest. 

In figure 16(u) and 16(b), the contribution of Q-events to the total =-distribution 
(along y )  is presented at two z-locations, z = 0.5 and 0.135. A comparison of these 
figures reveals that 4 3  events are most influenced by the corner effects. The 4 3  events 
are created by the correlation between -u' and -d, so that the ejection event is 
responsible for this correlation because of the negative u'. The strength of 4 3  events 
increases when going from the wall bisector towards the vertical wall. Consequently, 
these events must be created by ejections from the vertical wall, resulting in the increase 
of a in this region. 

In the previous section we showed that the mean convection of the streamwise 
velocity was created by both the and the =-stresses. The --correlation is zero 
in channel flow owing to the homogeneous z-direction, but in the present flow the 
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- 
- behaviour of u’w’ beomes important. Contribution from the different quadrants to 
u’w’-production above the horizontal wall is illustrated in figure 17. The ejection events 
(Q2 and Q3) in figure 17 represent the upper part of an ejection structure, where Q2 
belongs to the right eddy and 4 3  belongs to the left eddy (looking downstream). At the 
wall bisector (figure 17a), each quadrant contributes significantly to this stress 
component, but the sum is zero; we will refer to this effect as ‘the cancelling effect’. 
Toward the vertical wall where deviation from the homogeneity in the z-direction 
becomes important, figure 17(b) depicts the Q-events which contribute to the total 
u”-stress. Accordingly, close to the horizontal wall is positive, created by strong 
Q1 and Q3 events; also, further away from the wall, negative u’w’ is primarily created 
by 42 events. Close to the corner below the corner bisector, both streaks and - ejections 
contribute to positive u’w’. The contribution from ejections create positive u’w’ because 
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FIGURE 17. Reynolds shear stress, m, from each quadrant as a function of y ;  

(a) z = 0.5; (b) z = 0.135. 

4 3  events are stronger than 4 2  events, and this suggests that the ejections from the 
horizontal wall on average bend toward the vertical wall. This difference between Q2 
and 4 3  events can also be explained by the average location of the first ejection from 
the horizontal wall measured from the origin; the left streamwise vortex in this ejection 
rotates counterclockwise, so that the 4 3  events dominate the 4 2  events. 

Owing to its direct connection to the mean streamwise momentum equation, the 
distribution of as a function of z above the horizontal wall is perhaps the most 
useful quantity to describe the convection - of streamwise velocity. In figure 18 (a) the Q- 
events contributing to the total u'd-correlation are plotted as a function of z at 
y = 0.042. From the total (figure 18a, solid line) the z-gradient of -m 
is found to be positive for 0 < y < 0.02, negative for 0.02 < y < 0.14 and positive for 
0.14 < y < 0.3 (see the budget distributions in figure 9c).  At this cross-section close to 
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FZI 18. Reynolds shear stress, m, from each quadrant as a function of z at y = 0.042; (a) all 
u’w’ quadrant events; (b) comparing contribution from sweeps (Q1 +Q4) and ejections (Q2+43). 

- the corner, typically the ejection event dominates - the streak event in the production of 
u’w’ (figure 18b); the total contribution to the u‘w‘-correlation from the sum of 4 2  and 
43 events is generally twice the contribution from the sum of Q1 and - Q4. It is noted 
that the contributions from the individual quadrant events creating u’w’ above the 
horizontal wall are comparable in magnitude to the quadrant events creating n, but 
owing to the cancelling effect of the =-events, their sum is reduced; maxlu‘wll is 
about 40 YO of max Iu’v’I. 

above the horizontal wall with a maximum between 
(y ,  z) = (0.025,O.l) and (0.025,0.2) is caused primarily by ejections from this wall. Two 
related effects contribute to this phenomenon. Because there can be no ejections from 
the comer, the first ejection from the horizontal wall near the corner will ensure that 
4 3  events will be dominant. Also, the interactions between ejections from both walls 

In summary, the positive 
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will bend the ejection stem toward the perpendicular wall, creating 4 3  events. In $6,  
instantaneous flow field structures will be presented in order to further illustrate the 
second effect. 

5.2. Secondary shear stress correlation 
In this section, the quadrant analysis is extended to the secondary shear stress, m. 
The importance of this quantity - -  lies in the fact that together with the difference between 
the secondary normal stresses (vr2 - w") it contributes to the production and transport 
of mean streamwise vorticity. 

Contributions to the secondary stress from the individual Q-events are also 
significant when there is only one inhomogeneous direction, but for such flows the sum 
is zero (the cancelling effect). Figure 19 (a) illustrates the Q-event contributions to the 
secondary shear stress at the wall bisector in the square duct flow. The turbulence 
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FIGURE 20. Instantaneous velocity, pressure, and streamwise vorticity distributions in the 
transverse plane: (a) U/u,-contours, increment = 2; (b) u, w velocity vectors. 

events creating the v"-shear stress are most likely to be associated streamwise vortices; 
41, and 42, events are created by secondary flows directed up from the wall with an 
angle in either the right or left direction (looking downstream), respectively, and the 
43, and 44, events are similarly created by the downward motion towards the wall. 
These streamwise vortices are created by ejections, and owing to the lack of ejections 
from the corner (origin), turbulence fluctuations in the corner bisector direction are 
reduced. Figure 19 (b) shows that the turbulence fluctuations perpendicular to the 
corner bisector (represented by 42, and 44, events) are maintained until around 
z = 0.05 when the corner is approached from the wall bisector at z = 0.5, whereas the 
contribution of the 41, and 43, events start to decrease at around z = 0.3. The reason 
why the 42, contribution is maintained closer to the comer (figure 19b) may also be 
due to the interaction between ejections from both walls tilting the ejection stem 
toward the perpendicular wall. The combined effect of no ejections from the corner and 
the tilted ejection stems causes the Q2,and 44, events to be stronger than the Q1, and 
4 3 ,  events, resulting in a negative u'w'-correlation. 

This analysis indicates that the magnitude of the v"-correlation is significant in the 
corner region and is about 20% of the maximum primary shear stress (lu'vll). 

6. Instantaneous flow structures 
In this section we present an illustrative cross-section of the instantaneous turbulence 

structures which contribute to the production of shear stresses. 
We consider the instantaneous streamwise velocity contours and secondary velocity 

vectors at a cross-section in the (y,z)-plane (figure 20). First we examine an ejection 
which is not influenced by the sidewalls which appears at z = 0.5 near the horizontal 
wall; the characteristic mushroom-like shape is depicted in figure 20(a) and two 
counter-rotating vortices exist at the same place in figure 20(b). 

Near the corner, several ejections can be observed. The strongest ejection, whose 
mushroom shape is evident in figure 20(a), starts from the vertical wall at around 
y = 0.25. The velocity vectors display two counter-rotating vortices, one below and one 
above this ejection structure. The lower vortex is most pronounced, and it appears that 
this vortex interacts with another ejection structure from the horizontal wall. Figure 
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20(a) indicates that an ejection event is starting at around z = 0.25 from the horizontal 
wall, and the stem of this ejection stretches out toward the vertical wall and joins the 
lower vortex belonging to the stronger ejection from the vertical wall. 

It must be emphasized that these instantaneous pictures only serve as an example of 
typical turbulence structures in this flow which are responsible for the interactions 
between ejections from both walls; this interaction results in the bending of the ejection 
stems. 

7. Pressure-velocity correlations 
In second-order turbulence closures, modelling of the pressurevelocity correlations 

is the key to a successful model. In this section, we investigate the behaviour of the 
pressure-velocity correlations as they relate to the production of secondary flow and 
to the distortion of the isotachs. 

The influence of pressure fluctuations on the Reynolds stress transport equations is 
contained in the velocity-pressure gradient correlation, 

In turbulence models, nii is usually split into a pressure-strain correlation and a 
pressure-diffusion correlation (by the chain rule) : 

4 j  = @,,+ q, 
and each term is written 

pressure-diffusion, 

where s& = #h.@xi+au,/i3xj) is the fluctuating strain rate, and atj is the Kronecker 
delta. 

7.1. Diagonal pressure-strain terms 
The reduced 3 gradient, a?/i3yY, near the corner along the horizontal wall (see figure 
12a), which becomes an important contributor to the source of the streamwise vorticity 
(equation (8)) can be explained by the redistribution of p-energy to p-energy 
through the pressure-strain (or velocity-pressure gradient) correlations. This effect is 
similar to the ‘splatting’ effect that occurs in the vicinity of a solid boundary (Moin & 
Kim 1982). The difference between the ‘splatting’ effect and this ‘corner’ effect can be 
observed in figure 21 (a, b) in which the diagonal terms in the pressure-strain tensor are 
plotted as a function of y at two z-locations: in the first location both the corner and 
the splatting effects are present and in the other location only the splatting effect 
is present. Near the corner, where both effects coexist, at z = 0.064 (figure 21 a), 
@& becomes a loss to the ?-budget for y < 0.05. This loss is distributed only to the 
d2-budget for 0.02 < y c 0.05 constituting the corner effect, even though the strongest 
contribution to is from the u’2-component through @,,,.The splatting effect takes 
place for y < 0.02, where 3-energy is distributed to both d2 and p, in figure 21 (a). 
Further away from the corner, where only the splatting effect is present (figure 21 b), 
this effect is observed close to the wall for y < 0.02 with a negative @22, increased QI1 

and an increased @33, Also, the distributions of @22 and @,, cross-over on the corner 
bisector, indicated by the vertical lines in figure 21 ; above the corner bisector, energy 
transfer is from w12 to p. This corner effect can be explained by the interactions 

4 FLM 257 
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FIGURE 21. Diagonal terms in the pressure-strain tensor at two z-locations : (a) z = 0.064; 
(b) z = 0.198. The vertical line indicates the corner bisector. 

between ejections arising from both walls consecutively. The upward motion in an 
ejection from the horizontal wall is bent toward the vertical wall when an ejection has 
taken place here. The ejection from the vertical wall will cause a downdraft to the 
corner caused by the streamwise eddy near the corner. This downdraft will influence 
the ejection from the horizontal wall and bend its ejection stem toward the vertical 
wall. Because of this bending, energy is transferred from the u' to the w'-component; 
in $6, this scenario is illustrated by considering the instantaneous flow field. This 
interaction of the ejections also results in the -u"-correlation near the corner. It 
should be stressed that the underlying reason for the interaction of ejections giving a 
mean secondary flow is the lack of bursts from the corner, causing the ejections to be 
'locked' at locations away from the corner. 

7.2.  Transport terms 
In second-order turbulence closures, the pressurestrain correlation (equation (1 1)) is 
usually modelled directly, and the pressure-diffusion term is modelled together with 
the turbulent transport term, 
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However, results from DNS of turbulent channel flow indicate that n,, not cDgj, should 
be modelled directly because near the wall, Gij and the pressure transport term TG are 
opposite-valued and cancel each other when added (Mansour, Kim & Moin 1988). 

Modelling of l7, may be easier than modelling of cDij because the pressure transport 
term acts differently than the turbulent transport term and lumping them together in 
a model for (q2 + Tr'.) will require the model to describe two different effects. For the 
square duct flow, the two transport terms, T,, and T;,, are plotted in figure 22(a) 
indicating that the differences are indeed quite significant; q, displays the diffusion 
process which it represents, whereas Tf, acts in the direction opposite to q2. The sum, 
ITl, = TFz+cD12, acts as a redistributive term, and in fact the main part of the 
redistributed gain in the budget for z < 0.2, below the corner bisector, comes 
through the pressure transport term, Tr3 (for y < 0.06 in figure 22b). 

7.3.  Off-diagonal velocity-pressure gradient correlations 
The off-diagonal velocity-pressure gradient correlations contribute strongly to the 
anisotropic shear stresses (Huser 1992). A complex intehction between the three off- 
diagonal shear stress terms was found to be a part of the corner effect. 

Considering first the effect that also occur in turbulent channel flow, in figure 23 (a, 
4-2 
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FIGURE 23. Off-diagonal velocity-pressure gradient terms from the primary shear stress budgets : 

(a) at z = 0.5 and z = 0.19; (b) at z = 0.022. 

dashed line) the distribution of IT,, at z = 0.5 is plotted. This distribution compares 
well qualitatively with data from Mansour et al. (1988), where positive U12 is a loss to 
the production of --. For z < 0.3, the effect of the corner becomes pronounced, and 
the distributions at z = 0.19 (figure 23a) indicate that U,, is reduced. The reduction of 
P,, occurs simultaneously with a gain to the u"-budget through ITl, for y < - 0.06 
(figure 23 a, chain-dashed line), which is one of the mechanisms by which positive u'w'- 
shear stress is produced (see contour plots of m, figure lob.  Note that the m- 
contours are obtained from the u"-contours by rotating u" 90" in the transverse 
plane). The connection between u"- and m-stresses can also be observed in the 
distribution plot of U,, and 17,, parallel to the vertical wall at z = 0.022 (figure 23b). 
The reduced n1, along the vertical wall for z < 0.2 is probably responsible for the 
positive n1, at the same location. There is a role reversal for the velocity-pressure 
gradient terms from the duct centre to the corner; at the duct centre, 17,, is positive, 
but acts as a loss to the negative shear stress (-=), whereas near the corner, 17,, is 
a gain to the positive shear stress (m) (figure 23b). 

Considering the a-momentum budget (94.3, figure 9 c) along the vertical wall, it can 
be noted that both the reduced magnitude of and the positive u12.'I create a relative 
loss to this equation (for y < 0.2) through the terms -am/& and - a m / a y ;  for 0.05 
< y < 0.2 both the turbulent shear stress terms decrease as the corner is approached 
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resulting in a decreasing @-convection. This reduced &convection becomes negative 
near the vertical wall. The positive iz-convection along the vertical (or horizontal) wall, 
with a maximum value at y = 0.3 (see figure 9c) ,  is caused by the large magnitude of 

Summarizing the off-diagonal pressure-velocity correlation effects in the square duct 
flow, the present results indicate that negative iz-convection in the corner is partly 
created by the velocity-pressure gradient interactions between the two primary shear 
stresses. This reduction of @-convection toward the corner, caused by the redistribution 
from u/zil to u" via nI2 and n,, (below the corner bisector), is similar to the 
production of streamwise vorticity due to energy transfer from d2 to w ' ~  described in 
the previous section. This effect is also caused by the arrangement of the primary shear 
stress production terms; no turbulence model is needed for these terms because they 
are given by the dependent variables in the governing equations. 

combined with a low u1zi'. 

- -  

8. Conclusions 
A new solution procedure for the calculation and analysis of three-dimensional time- 

dependent incompressible flow in a square duct has been developed. The numerical 
solution of the Navier-Stokes equations incorporates a projection method and the 
decoupled equations are solved semi-implicitly by a Runge-Kutta method. Spatial 
discretization is done by fourth-order central and fifth-order upwind-biased finite 
differences and by the Fourier pseudo-spectral method. 

The present calculations were performed at a Reynolds number Re, = 600 (based on 
the mean friction velocity and the duct width) which is in the fully turbulent regime. 
At this Reynolds number secondary flows and the isotach distortions are accurately 
predicted ; low-Reynolds-number effects in the simulation are relatively weak and are 
manifested in the reduction of the secondary flow near the wall bisector compared to 
high-Reynolds-number experiments. The main secondary effect, which is responsible 
for the creation of the secondary flows both at high and low Reynolds numbers, is 
clearly captured in the simulations and is the main topic of the present work. 

Turbulence statistics along the wall bisector are computed and compared with data 
from other wall-bounded turbulent flows, displaying excellent agreement in the viscous 
sublayer. It is evident from the present results that there is stronger turbulence 
production along the walls away from the corner compared to channel and boundary- 
layer flows. This relatively strong turbulence production near the wall bisector 
combined with the low turbulence production along the corner bisector produce 
positive and negative convection of the mean streamwise velocity at the respective 
locations, as evident from the terms in the Reynolds-averaged streamwise velocity 
equation. Convection of streamwise velocity is responsible for the distorted isotachs 
and can only occur in the presence of the secondary flows. The terms in the Reynolds- 
averaged streamwise vorticity equation unveil the mechanism by which the secondary 
flow is produced by the secondary Reynolds stresses. 

An explanation of the mechanisms responsible for the creation of secondary flows 
of the second kind and the distorted isotachs is offered by considering the dominant 
turbulence structures in the flow. These (dominant) ejection structures are produced 
during a bursting event and contain two streamwise counter-rotating vortices. On the 
horizontal wall the preferred rotational sense of the leftmost streamwise vortex in an 
ejection that can occur close to the left corner determines the mean rotational sense of 
the secondary flow in that octant. The reduced mean shear at the corner bisector 
prohibits ejections from occurring here and thereby allows a mean secondary flow 
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toward the corner from the core of the duct. The strong ejections along the walls away 
from the corner promotes a relatively low streamwise velocity compared to the 
streamwise velocity at the corner bisector, explaining the distorted isotachs. 

The characteristic anisotropic Reynolds stress distribution can also be explained by 
considering the ejection structures and by the ‘new’ effects that are observed in the 
vicinity of the corner. Considering the lower left corner of the square duct, the new 
effects are observed as nonlinear interactions between simultaneous ejections from 
both walls. These interactions tilt the ejection stems toward the perpendicular wall, 
creating positive primary shear stress (m and m, above and below the corner 
bisector, respectively) and negative secondary shear stress (--vIWI at the corner 
bisector). This tilting of the ejection stem also redistributes energy from to w12 (at 
the horizontal wall in the lower left corner) where v is the vertical and w is the 
horizontal velocity. This effect is manifested by the behaviour of the pressure-velocity 
correlation tensor near the corner. 

reach about 40 % and 20 %, respectively of the 
maximum correlation, and the quadrant analysis indicates that the ejection 
structures contribute most to this anisotropy. Other effects, including sweep events, 
also contribute, indicating the complexity of the flow. 

The magnitudes of and 
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